

Household and Farm Level Gasifier Technology

By Natthawud Dussadee, Ph.D

Energy Research Center, Maejo University, Sansai, Chaing Mai, 50290, THAILAND

Tel: +6653 875140

Fax: +6653 878333

Email: natthawi@mju.ac.th

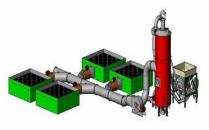
Website:http://www.energy.mju.ac.th

- 1. Introduction of Maejo Energy Research Center.
- 2. Potential of Biomass Resources in Northern Thailand.
- 3. Biomass Gasification for Household Utilization.
 - > Principle of biomass gasification.
 - > Application Biomass gasification for gas cooking.

Introduction of Maejo University (MJU)

- ☐ Founded in 1934.
- Located at Chiang Mai Province, Northern region, Thailand.
- ☐ Thailand's oldest agricultural institution.

About ERC


- **Energy Research Center, ERC.**
- **❖** One of the best Research Center in Maejo University (MJU).
- Main Research Field

Biomass Conversion to Energy

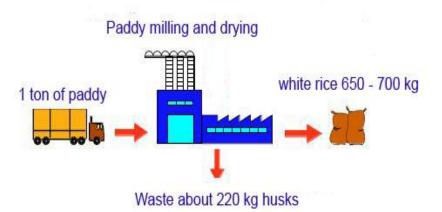
Energy Saving in Agricultural Process

Energy Crop (Tung oil, Jatropha, Palm oil)

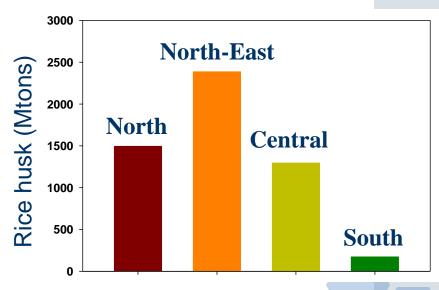
Biomass Resources in Thailand

Types of Biomass for household applications

- > Fast growing tree (Wood chip).
- Agricultural waste (rice husk, Corn cob).
- Waste from SMEs process such as waste from furniture (Wood chip).



Potential of Rice Husk Fuel in Thailand

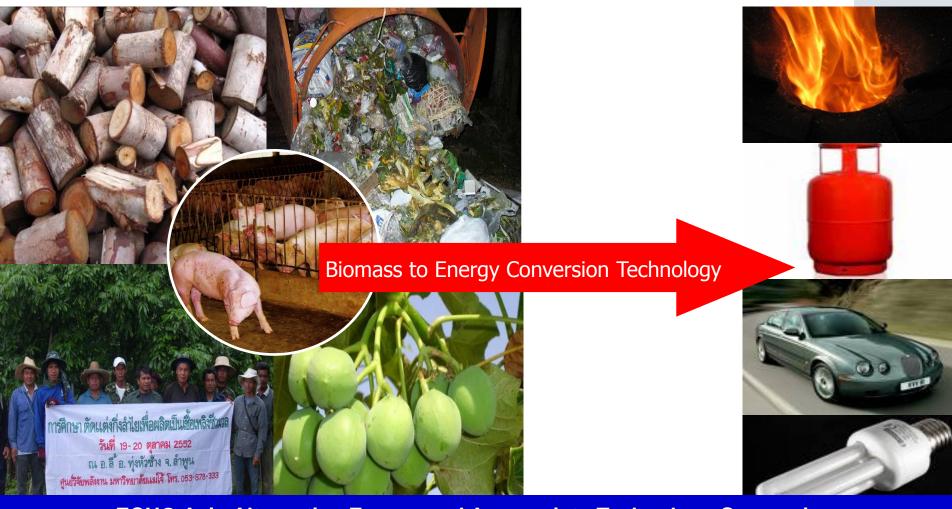

Potential of Rice Husk as Fuel for House Utilization

Total rice husk in 2012: 6,000 MTons/Year

Rice husk price : <1,000 Baht/tons

Total equivalent energy: 1.9x10⁶ toe.

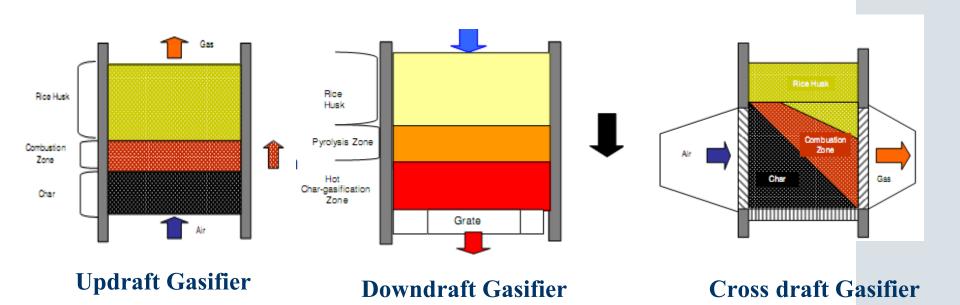
Potential of other biomass in Thailand



ECHO Asia Alternative Energy and Appropriate Technology Symposium

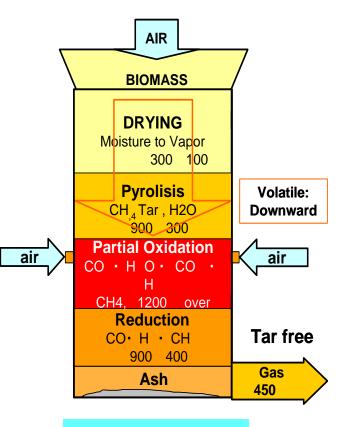
Conversion of biomass to energy

How communities convert biomass to energy ??



Biomass gasification

- **A** biomass gasifier is the device that converts solid biomass materials into the flammable gaseous fuel using thermochemical process.
- **❖** Main gases consist of CO, H₂ and CH₄.
- **❖** These gases can be burnt very efficiently and hence present less environmental problems compared to the direct combustion of the solid biomass.
- * Biological process, mainly the fermentation, can also be used to convert biomass into fuel. The product is called biogas.



Types of Gasifier

Gasification Process

Down Draft Gasifier

Combustion/Oxidation Zone (1000-1500 C)

$$C+O_2 \rightarrow CO_2$$

$$2H_2+O_2 \rightarrow 2H_2O$$

Heat source

Reduction Zone

$$C+CO_2 \rightarrow 2CO$$

C+H₂O → CO+H₂ (Boundouard Reduction) 900 C

 $C+2H_2O \rightarrow CO_2+H_2$ (Water gas Reduction) 500-600 C

$$CO+H_2O \rightarrow CO_2+H_2$$

 $C+2H \rightarrow CH_4$ (Methane Production)

Pyrolysis/Distillation Zone (200-500 C)

Dry Biomass+Heat \rightarrow Charcoal+CO+CO₂+ H₂O +CH₄ C₂H₆+ Pyroligneous Acid+Tar

Drying Zone (100-200 C)

Development of Gasifier stoves

MJU-1:Rice husk stove

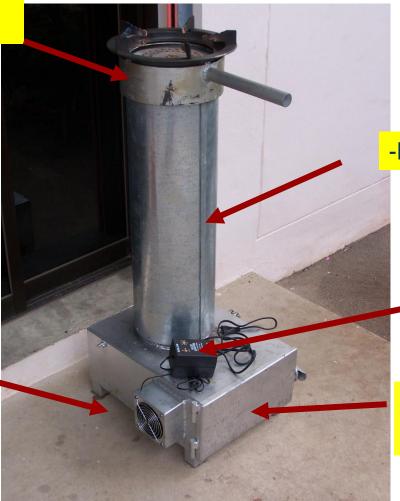
MJU-2: Wood chip stove

MJU-3: Continuous biomass stove

Household rice husk stove

Model: MJU-1

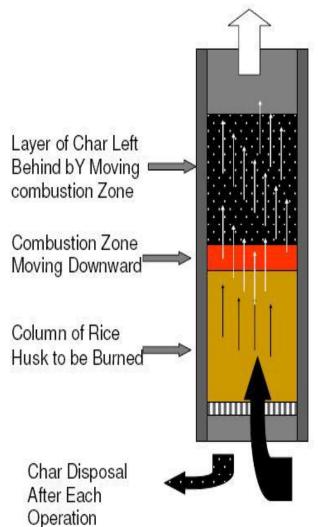
- Easy to used.
- Rice husk as fuel.
- Flame as LPG, High HV.
- **Consumption 30-45 minute /1.5 kg.**
- Electrical fan DC 12V / 1 A.
- Cost 3,000 baht/unit.
- Heat generation of 1-2 kW.



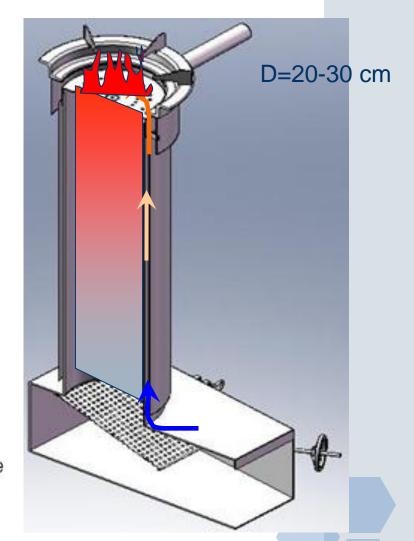
Rice husk gasifier for household utilization

-Reactor with double wall

AC to DC Adepter


Ash collector

DC 12 V / 1 A



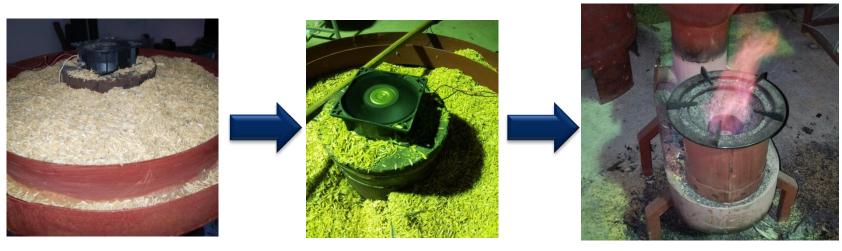
Household rice husk stove

Gas Generated during Gasification

Air Introduced by the Fan

Household rice husk stove

Operation step



Continuous household rice husk stove

Continuous household rice husk stove

- \triangleright Consumption rate = 3 4 kg/hr.
- \triangleright Heat generation = 1.5 2 kW.
- \triangleright Thermal efficiency = 10 13%.

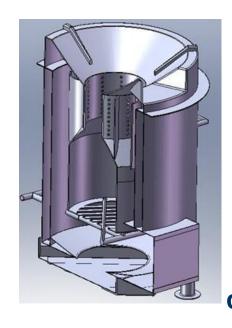
Household wood ship stove

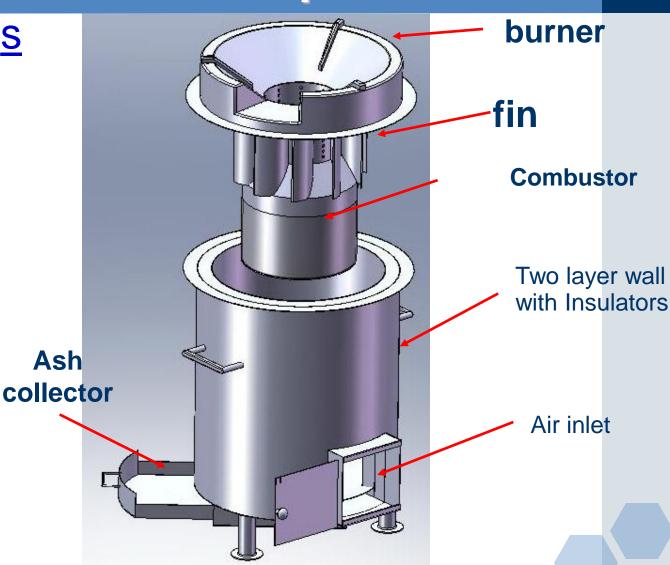
Model: MJU-2

- **Easy to used.**
- flame as LPG, High HV.
- Wood chips, corn cobs and charcoal as Fuel.
- Used continuous mode.

Wood chip

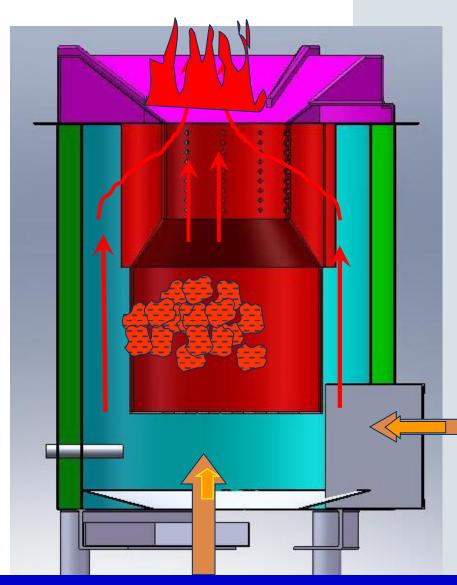
Corn cobs




Charcoal

Household wood ship stove

<u>components</u>

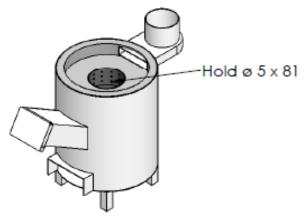


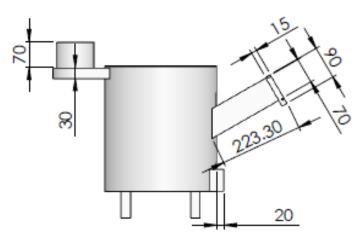
Household wood ship stove

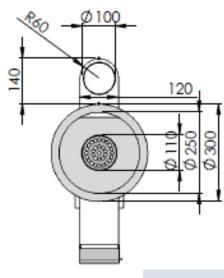
Operation of the stove

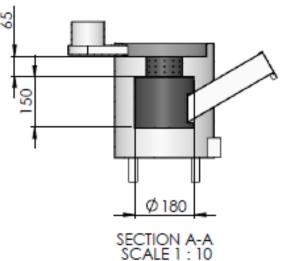
- **Open ¾ air inlet.**
- **Loading wood ship and firing.**
- \bullet Start up time 10 15 min.
- Fuel consumption 3-5 kg/hr.
- Generated heat 3-4 kW.
- **Efficiency of about 20%.**
- **Reducing smoke.**
- Cost 3500 baht/unit.

Wood ship stove




Cooking utilization

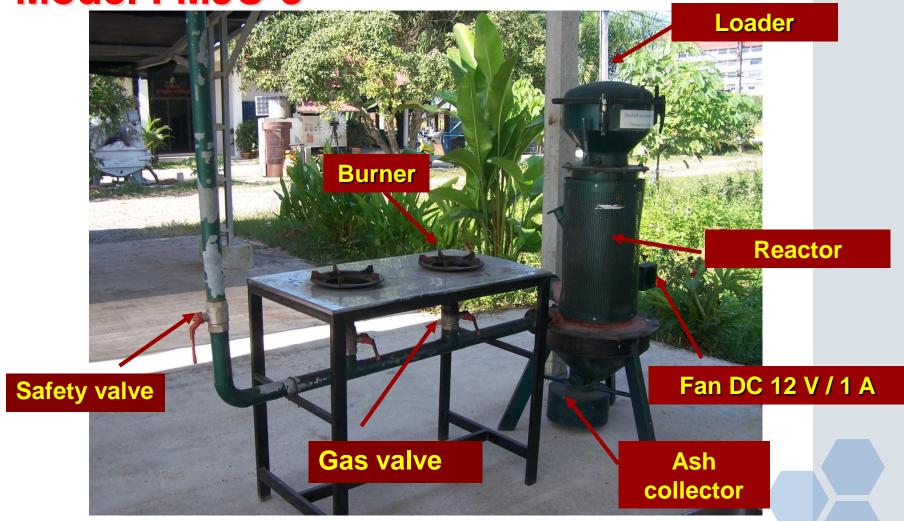



Household wood chip stove

Model: MJU-2.1



Household wood chip stove



- \triangleright Consumption rate = 1 1.5 kg/hr.
- \triangleright Heat generation = 1 2 kW.
- Thermal efficiency = 10 20% depending on the types of fuel with the highest one being corn cobs.

Continuous household wood stove

Model: MJU-3

Continuous household wood chip stove

Demonstration: > 5,000 people /year

Training: > 20 times /year

8.เนื้อหาการฝึกอบรม

ภาคเซ้า (บรรยาย)

08.00 - 09.00 ลงทะเบียน 09.00 - 09.15 พิธีเปิดการอบรม

09.15 - 10.15 บรรยายสถานการณ์พลังงานและเชื้อเพลิงที่

เหมาะสมสำหรับเตาเผาชีวมวล

10.30 - 12.00 หลักการทำงานและการออกแบบเตาแก๊สซีวมวล

ภาคบาย (ฝึกปฏิบัติ)

13.00 - 16.00 สาธิตการผลิตเตาแก๊สชีวมวล 16.00 - 16.30 พิธีมอบวุฒิบัตร / พิธีปิด

ผู้เข้ารับการอบรมจะได้รับ

- 1. แบบเตาพร้อมคู่มือการสร้างเตาแก๊สซีวมวล
- 2. VCD สาธิตการสร้างและใช้งาน

9.ค่าลงทะเบียน

แบบ 1 คาลงทะเบียน 1,200 บาท

แบบ 2 สำหรับผู้ที่ต้องเตาแก๊สชีวมวลพร้อมอบรม

- O 3,500 บาท พร้อมเตาแก๊สชีวมวลเชื้อเพลิง ้แกลบ เศษไม้
- O 2,500 บาท พร้อมเตาชีวมวลใช้ ฟืน เศษไม้ เป็นเชื้อเพลิง
- O 23,000 บาท เตาแก๊สชีวมวลสำหรับในอุตสาหกรรม

การซำระเงิน

โอนเงินเข้าบัญชี ธนาคารกรุงไทย สาขาแม่โจ้

บัญชีออมทรัพย์ ชื่อบัญชี ศูนย์วิจัยพลังงาน มหาวิทยาลัยแม่โจ้

เลขที่บัญชี 375-0-03681-0

หมายเหตุ: ชำระเงินก่อนการประชุม เหลือ 1,000 บาท (สำหรับแบบ 1)

เรา...แก็ปัญหาภาวะโลกร้อนใต้

โครงการอบรมเชิงปฏิบัติการ

เรื่อย สาธิศการพลิศและการให้เตาแก๊สชีวมกลเพื่อเพิ่มรายได้ครัวเรือน และแก้ปัญหาโลกร้อน

> ณ อาตารฝึกอบรม ศูนย์วิจัยพลังงาน มหาวิทยาลัยแม่โจ้ ตำบลหนองหาร อำเภอสันทราย จังหวัดเชียงใหม่

โดย ศูนย์กิจัยพลังงาน มหากิทยาลัยแม่โจ

ติดตอไดที

คุณจึงาพร ดุษฎี และ คุณกรรณิการ์ ต้ะเรือน สูนย์วิจัยพลังงาน มหาวิทยาลัยแม่โจ้ ตำบลหนองหาร อำเภอสันทราย จังหวัดเชียงใหม่ 50290 โทรศัพท์ 0−5387−5140 โทรสาร 0−5387−8333 http://www.energy.mju.ac.th E−mail: energy.mju@ac.th

Promotion & Implementation

Utilization: > 3,000 household

Promotion & Implementation

IV. Currently Gasification Technology Development

Agricultural-car

Walking tractor

IV. Currently Gasification Technology Development

Small-scale biomass power generator

Power generation 32 kW

Dual Fuel Biodiesel/Producer gas

Gasifier Efficiency 75-85 %

Heating Value 3.5 MJ/Nm³

Acknowledgement

Thank you for your attention

Contact Us

Dr.Natthawud Dussadee

Phone: +66 53 875140

Fax: +66 53 878333

* Email: natthawu@mju.ac.th

URL: http://www.energy.mju.ac.th