Creating Your Own Potting Mixtures

The goal of a nursery?

To produce healthy vegetable transplants or seedling trees that will be successful

Primary goal of a tree nursery

- Quality seedlings (ICRAF 2002)
 - Well-developed root system
 - Anchor in the ground quickly and start growing quickly after planting out
 - Sun-adapted foliage (hardening)
 - Balanced shoot/root ratio (1:1 or 1:2)
 - Adequate carbohydrate reserves
 - Are strengthened by inoculation with *Rhizobium* or mycorrhizae if needed.

Why potting mixtures?

- Why not use soil?
 - Highly variable properties
 - Disease problems
 - Water management
- What are the benefits of *home-made* potting media?
 - Predictable performance
 - Better water retention to media weight ratio
 - Consistent fertility
 - Less disease problems

Potting Mixtures

- Obtaining potting mix or germination mix can be a major challenge for a nursery operation
- Purchasing commercial mix is probably not a viable option.
- A poor quality mix will typically result in poor quality seedlings.
 - Nursery stage is extremely important for long term health and productivity! **ECHO®**

What will it take?

Creating a germination or seed starter mix:

- Observation
- Experimentation
- Resourcefulness
- Trial and error
- Planning ahead

What makes a good mix?

- Retains adequate moisture
- Is disease free
- Promotes quick and uniform germination
- Promotes excellent root growth
- Provides initial nutritional needs of plants
- Consistent quality and performance
- Based on locally available materials
- Not overly labor intensive to create
- Low cost

Use locally available materials

- Top Soil
- Compost
- Coarse sand or fine gravel
- Composted sugarcane bagasse
- Composted rice hulls
- Charred rice hulls
- Composted Coffee hulls
- Coconut fiber/coir (coir dust)
- Composted manure
- Worm castings

What makes a good mix?

- A balance between 3 major components:
 - A stable, drainage component: Porosity
 - A water-holding component
 - A fertility component

Potting Mixture Recipes

- Depends on crop, soil composition, and climate.
- Example mixes:
 - 3 parts topsoil, 1 part humus-rich soil
 (compost), 1 part sand (coarse sand)
 - 5 parts topsoil, 2 parts decomposed manure, 1 part coarse sand, 1 part decomposed straw or coir dust, 1 part 3/8" ballast

 Source: World Agroforestry Center
 - Mix 7 parts soil with 2 parts well-decomposed chicken manure, and 1 part fresh or charred rice hull. (IRRI)

Potting mix Guidelines

- Learn about your local topsoil!
 - physical
 characteristics of
 available soil will
 determine your
 potting soil
 recipe
 - Clay, Silt, Sand,Organic matter

Using soil in your mixture

- Adjust your mixture based on soil type:
 - Ratio of 3 main components

TOPSOIL: FINE GRAVEL: ORGANIC MATTER

- For heavy soil (high clay) 1:2:2
- For medium soil (loam) 1:1:1
- For light soils (sandy) 1:0:1

(World Agroforestry Centre)

Soil ribbon test to assess quality of soil-based mixes

cm	Mix okay?	Likely cause	adjustment
<1.5	No, too much air and not enough water holding capacity	Too much sand	Add clay loam and compost
1.5-2	Yes		
2-4	No, not enough air and water-logged	Too much clay or silt	Add coarse sand
4+	No, very little air space and too much water	Too much clay	Add coarse sand and compost (charred rice hulls)

Organic Matter in Potting Mixes

- Rice hulls
- Compost
- Coconut coir dust
- Bagasse
- Saw dust
- Eucaplytus bark (*E. diversifolia* and *E.* calophylla)..up to 10%, composted and aged 12 months. Up to 30% if milled to particle size of 5mmuncomposted. **ECHO**®
- Kenaf?

Rice Hulls

http://www.echotech.org/network/modules.php?name= News&file=article&sid=201

UHDP Experiment

- The goal of the trial was to compare two potting mixtures: one which contained burnt or charred rice hulls and another containing composted rice hulls
- Two treatments:
 - 2:1 soil/burnt rice husks
 - 2:1 soil/rice husks composted in pig manure.
- Seeded with Zea mays

13 March 2008 Composted (Left), Burnt (Right)

25 March 2008 Composted (Left), Burnt (Right)

22 April 2008 Composted (Left), Burnt (Right)

ECHO®

Discussion

- The treatment with composted rice husks and pig manure showed initial strong growth
- The treatment with burnt rice husks resulted in sustained nutrition
- Burnt rice husk treatment produced more ears and had much darker green foliage
- Composted rice husks probably began to decompose and the microbes were using up all available nitrogen

Test fertility with maize

- Good indicator of fertility
- Many diagnostic keys available for maize

- Other indicator plants?
 - papaya...

Charred Rice Hulls

• "smoked rice hulls" or "rice hull ash"

 Southeast Asia-used extensively in commercial potting mixes

• 38% carbon, 62% silicon

• Properties:

- Disease-free medium
- Good water-holding capacity
- Good drainage
- Adds soil structure
- Some essential nutrients (Si)

Compost

- Compost
 - Create humusrich material
 - Good water retention
 - Biologically rich
 - Good fertility
 - 60°C for ?days?
 - Assessing quality
 - plastic bag test

Screening your compost

- For fine germination mixture 5mm screen
- For course potting mix us 1/4" screen (?mm)
- Screening:
 - Manual
 - Mechanical (rotary sifting) pictures on flash

Sugar Cane Bagasse

Sugar Cane Bagasse

- Byproduct of processing sugar cane
- Should be finely shredded, then screened
- Best if well composted
 - C:N ratio Can tie up N initially
- Improves water retention of mix

The Haiti Mix

- 'Haiti Mix'5 parts sugarcane bagasse, 1 part rice hulls and 1 part sandy loam soil. (from Amaranth to Zai Holes, Chapter 6)
- Must be well decomposed
- Color of bagasse should be dark red to brown
- Heat finely shredded bagasse by adding 1 pound per cubic meter of urea to mix
- Center of pile should reach 145°F (62°C)
- Turn pile inside out to heat evenly

Inoculating Potting mixes

- For some species it may be necessary to inoculate with soil microorganisms
- Nitrogen Fixing Bacteria (actinomycetes) or mycorrhizae.
- Methods of inoculation:
 - Direct inoculation
 - Nodule drench
 - Stock beds

Adjusting pH

- Importance of pH?
- Measuring pH
- Lowering pH: Sulfur
- Raising pH: Lime

Mixing the mix

- Calculate volume needed
- Measure individual components
- Mix light components first
- Mix well until there is uniform consistency

Measuring Quality

- Assess texture
- Balance of components
- Make adjustments

Keep it Clean!

- Prevent fungal diseases and kill nematodes with solarization or steam pasteurization
- Do this for germinating seeds that are sensitive to damping off or root diseases (*Pythium sp.* or *Phytophthora sp.*)

Solarization

- Spread soil on concrete or plastic.
- Thickness of 10cm
- Cover with clear plastic sheet
- Position in full sun

Temperature °C	Time to kill pathogens
40	2-6 weeks
50	6 hours
60	30 minutes

Pasteurization

- Fire box method
 - Cut a steel drum lengthwise or in half
 - Use stones or bricks to support drum
 - Fill with moist (not wet) potting mix
 - Start fire below drum
 - Heat to 60°C for 30min.
 - Allow to cool

Caution: Over-heating will kill beneficial organisms in soil!

Monitor Temperature!

Resources

- Research for Restoring Tropical Forest
 Ecosystems: A Practical Guide. 2008. FORRU
- Wightman, Kevyn Elizabeth. <u>Good Nursery</u> <u>Practices: Practical Guidelines for Community</u> <u>Nurseries.</u> World Agroforestry Center.
- Verheij, Ed, and Harry Lovenstein. <u>A</u>
 Nurseryman and His Trees. Agrospecial 1.

Resources

- Growing Trees and Gardens for Life: Practical tips for healthy tree nurseries and home gardens
 Edited by H van Houten
 ICRAF/WOB/SII, 2007. 88 pp.
 ISBN 9966-956-54-9
 http://www.worldagroforestrycentre.org/downloads/publications/PDFS/B15299.PDF
- Tropical Trees: Propagation and Planting Manuals. Volume 2. GROWING GOOD TROPICAL TREES FOR PLANTING K.A. Longman. Jan. 1998. Commonwealth Science Council. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/006/ad228e/ad228e00.htm
- Tropical Trees: Propagation and Planting Manuals. Volume 1. ROOTING CUTTINGS OF TROPICAL TREES K.A. Longman. February 1993. Commonwealth Science Council. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/006/ad231e/ad231e00.htm
- Good Tree Nursery Practices: Practical Guidelines for community nurseries. K. E. Wightman. 1999 World Agroforestry Centre http://www.worldagroforestry.org/units/library/books/Book%2031/html/INDEX.htm
- Vegetative Tree Propagation in Agroforestry: Training guidelines and references. Hannah Jaenicke and Jan Beniest editors. 2002 ICRAF. http://www.worldagroforestry.org/downloads/publications/PDFs/b14043.pdf

